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C L O U D S  

The interpenetrat ion of two clouds of rarefied plasma is involved in many problems of plasma physics, astrophysics, 
and geophysics. If the re la t ive  veloci ty  of the plasma clouds is sufficiently large compared with the thermal  veloci t ies ,  
the l inear theory predicts instabil i ty with respect to the longitudinal e lectrostat ic  fluctuations [1]. The ini t ia l  energy 
of oriented re la t ive  motion of the plasma clouds is converted, to some degree or other, into vibrat ional  energy, to 
which the energy of the e lec t r ic  field already contributes s ignif icant ly.  In principle,  this energy conversion may be so 
comple te  that the interpenetrat ion of the plasma clouds takes the form of an inelast ic  coll ision.  If the clouds have 
equal mass and one of them is at rest,  then one-hal f  the energy of oriented motion is dissipated as vibrat ional  energy. 
In a rarefied plasma part icle  collisions play no part. Hence there is no reason to expect the dissipated energy fraction 
to be distributed among the plasma particles according to Maxwell 's  law, and the e lec t r ic  fields vanish. However, 
nonlinear interactions in the spectrum of the oscillations considerably acce lera te  the processes of randomizat ion and 
"Maxwel l iza t ion"  of the vibrat ional  motion of the plasma. The nonlinear problem of the interpenetrat ion of plasma 
clouds can be studied only by numerical  methods. A plasma model  that permits such a numerica l  investigation of the 
problem is proposed below. A similar  model  has already been used by Buneman [2] and Dawson iS], and, for c a l cu -  
lat ing the effect of the space charge in an accelera tor ,  by Lomnev [4]. An approximate solution, based on the l inear 
theory,  is given by Parker [5], but in this paper the principal  conclusions appear to have l i t t le  just if ication.  In the 
present paper some numer ica l  results are presented. For the sake of s impl ic i ty  the one-dimensional  problem is con- 
sidered, a direct ion being assigned to the re la t ive  veloci ty  of the plasma clouds. In the actual  calculat ions,  protons 

were used as ions, i . e . ,  M / m  = 1837. 

1. Discrete Plasma Model an d Starting Equations 

We shall write the ini t ia l  one-dimensional  kinetic equation of the c~-component of the plasma (oc = i, e are ions 

and electrons) in the form 

OF~ OFc~ OF~ 
Ot + p = 0  ( i . 1 )  m~ Ox + e~E 

where the random quantity 

F~ = '~ 6 [x ~ x d  (t)] 6 [ p - -  P d  (t)] (L 2) 
i 

is evaluated by summing with respect to al l  the e lementary  plasma particles the product of the two 6-functions. The 
necessary and sufficient condition for the function F a (x, p , t )  to satisfy Eq. (1 .1)  is the fulf i l lment  of the equations of 

mechanics for any i - th  par t ic le  

pi "~ (t) = e~E, xi  "~ (t) = t-i- P d  ( t )  (1.3) 

Only the force due to the e lec t r ic  f ield E is considered in Eq. (1.1),  although this l imi ta t ion  is not necessary. 

From (1.1) ,  or more precisely from its th ree-d imens ional  analog,  a l l  the weE-known plasma kinet ic  equations 
can be obtained by introducing averaged distribution functions, as shown by Klimontovich [6]. Buneman [2] was the 
first to propose a f ini te  system of equations (1.3) as a model  and to use its numerica l  solution to study the nonlinear 

processes of e lec t ros ta t ic  plasma oscil lat ions.  

In accordance with the foregoing, this is equivalent  to solving the kinet ic  equation (1.1) ,  which is also the starting 
equation for the kinet ic  equation of the plasma taking into account the effect of pair interact ions.  Consequently, the 
plasma model  for a l imi ted  ~umber of macropar t ic les ,  which corresponds to a f ini te  number of equations (1.3)~ not 
only describes the motion of the plasma in a self -consistent e lec t r ic  f ield but also includes the effect  of pair in te rac-  

tions. In the  th ree-d imens iona l  case for macropar t ic les  with mass qm e,  charge qe, and ve loc i ty  v 0, the mean free 

path, defined as usual, is 

loNme~vo 4 t (1 .4 .1 )  
ne4L q 

where L is the Coulomb logari thm, assumed to be considerably greater than unity, and n is the plasma elect ron den-  

si ty.  In order to solve the problem of the effect of pair interactions in the plasma model  considered below, it is 



sufficient to consider only the case of macroelectrons in (1 .4 .1) .  In the one-dimensional  problem, formula ( 1 . 4 . 1 )  
is retained except that instead of the Coulomb logarithm the constant 4~r 2 is introduced. If v0is the velocity of the 
macroparticles -- equal to the velocity of the plasma electrons -- the mean free path of the macroparticles is found to 
be, in accordance with (1.4. 1 ), less than the mean free path of the plasma electrons by a factor q . In other words, 
the efficiency of the pair interactions is q times greater. On the other hand, in this same model the characteristics 
of the collective plasma motions (wavelength, frequency, etc.) do not change. Hence, in the model the real relation 
between the effects of the collective and pair interactions is distorted. Consequently, the model will satisfactorily de- 
scribe the nonlinear electrostatic plasma oscillations provided that the effect of pair interactions is small.  We shall 
formulate the corresponding condition. The characteristic wavelengt h of the oscillations must be much less than the 
mean free path l o from (1.4.1) ,  i . e . ,  v0/f~ 0 << l 0. The ratio of these quantities, if we introduce the number of 

macroparticles per new unit length, v0/k~ 0, is 

vo t ~ 1 ,  c t = (  n__~ V' vo . (1.4.2) 
~olo - -  4kSa 8 k kilo 

In the problem considered below a = /no*= 4 and k = 2 "1 (see w 2 ), and the ratio obtained is equal to 32 -1 . 

Obviously, such a criterion is too strict, since it does not allow for the self-consistent field, which considerably exceeds 

the electric field of a single macroparticle in this case. It follows naturally from (1.4.2) that the number of macro- 

particles per unit length must be large enough to prevent interactions of the macroparticles from playing a significant 
role.* 

The laws of conservation of momentum and energy follow directly from Eq. ( 1 . 1 ) .  The momentum and kinetic 

energy of the particles are determined in terms of the function Fc~ 

If the electric field satisfies Maxwell's equations and vanishes at infinity,  i . e . ,  there is no external field, and the 

functions Fez are equal to zero when [p I--" ~ (more precisely, P2Fc~ -* 0 when [ p I "-" ~), then the laws of conserva- 

tion of momentum and energy hold; 

+co 

otOI = O, W q-g-~ E2dx  = 0  (1.6) 

the electric field being linked with the particle density by the relation 

~-OD 

O__E_E 4 ~  ~ ] e . ] ~ ,  /~ = I F j p .  (1.7) 

- - o o  

The problem now consists in going over to the solution of a finite (computer - l imi ted)  number of equations (1 .3 )  

which nevertheless simulate the actual plasma. For this purpose, adjacent particles in phase space are combined to 

form buil t -up macroparticles, the number of which, in accordance with the foregoing [cf. (1 .4 .2) ] ,  should be quite 

large. 

We shall introduce the concept of a maeroparticle consisting of q elementary particles with the same velocity and 
coordinate. First, we shall assume that all  macroparticles have the same value of q. For an electron-proton plasma 
we obtain from (1.8) and (1.7) the system of equations 

d~x ei d2x pi 
m - ~  = - -  eE, M dt 2 = eE, (1.8) 

OE 
0-7 = 4aeq (n v ~ ne), (1.9) 

where np and n e are the densities of the proton and electron macroparticles, and i is the ordinal number of the electron 

or protot~ macroparticle.  If Eq. (1.9) is integrated, then, since E ( - o o )  = 0, 

E ( x ,  t ) = 4 a e q ( N v - - N e  ) (1. lo) 

* Neglecting the effect of pair interactions in the plasma leads to a milder criterion 

vo _ t , ~  t (a -~ n-'/') 
~oloq 4aakSq 



where 

x 

N ~  (r ,  t) = f n~ (x' ,  t) d z '  (~. "~ ~) 
- - O O  

denotes the number of macropar t ic les  of the c~-component of the plasma to the left of the point with coordinate  x in 
a co lumn with unit c ross-sec t ional  area.  

In Eqs. ( 1 .g )  and (1 .10 )  \,,e shall  go over to dimensionless units of t i m e  and length.  Let 

--- k f2ot ,  ~ _ kOoz ( ~. 12) .~- (dJte2qno ~ ~/~ 
- , , ~ - ,  Oo x ,--7#---~ J ' 

t tere f~o is the e lec t ron  plasma frequency,  n o is the charac ter i s t ic  macropar t i c l e  density, v 0is the charac te r i s t ic  v e l -  
oc i ty ,  k is an arbitrary numer ica l  coe f f i c i en t .  By means of Eqs. (1 .12)  we obtain from ( ] .  8) and (1~ i0)  in d i m e n -  
sionless variables  the two groups of equations 

dT~ , - -  z0n0~ ~/~ - -  ,i) ~,0,~0k ( ? Q  - -  N , )  ( i .  la)  

In the one -d imens iona l  problem it is natural  to speak about macrolayers ,  which consoi idate  all  the macropar t i c les  

with the same coordina te  x . Essentially,  this new concept  does not change anything,  except  the d imens iona l i ty  of 

the quant i t ies  no and N a. Consequently,  we shall  cont inue  to use the name  macropar t i c l e s  for macrolayers .  Now, 

however ,  we shall  understand by n 9 only the charac te r i s t ic  l inear  density of the macroparticles2; If, f ina l ly ,  for each  

macropa r t i c l e  we introduce the s e l f - ac t i on  and by gi understand the coordinate  of its ( 'enter of mass, then the final  
form of Eqs. ( 1 . 1 3 )  will  be:  

d2~ei 1[ 
~/r-' ?; A'~, ( ~ i )  - -  :Y, e I ' (J .  14) 

( ;~ :[5) 

The quanti t ies  

b : :  /,'en,,*, H,~* : H~) t,:~.2o ( I .  16) 

occur  in Eqs. ( 1 . 1 4 )  and ( 1 . 1 5 ) .  Here n; is the charac ter i s t ic  l inear density of the macropar t ic les ,  referred to the 

unit of length  introduced in Eq. (1.12).  

The  in i t ia i  t he rma l sp read  at each  point in space can be taken into account  by dividing both the e lec t ron  and the 

proton macropa r t i c l e s  into l smal le r  macropar t i c l e s  with weight  qs for the s-th type (here s = 1 . . . . .  l )o If we no rma l -  

ize  qs with the condi t ion  

q,  . ~ . . . @ q ~ = l  ( ~ . l v )  

then the equations of mot ion for the i - t h  macropa r t i c l e  of the s- th  type will  have the form:  
l g 

d2~e~ qci t I s ? 

S ~ l  S ~ [  

I 1 

s S 1 

The sums in Eq. ( 1 . 1 8 )  have  the fol lowing mean ing :  

( ] .  18) 

(~. 19) 

l 

qsNe s (~,~) - -  the sum of the weights of a l l  the  e lec t ron  macropar t i c les ,  
s: { 

l 
T 8 qs~p  (~ei) --- the sum of the weights of a l l  the  proton macropar t ic les  to 

, 1 the left  of the macroe lec t ron  with the coordinate  ~ei �9 

The sums in Eq. (1 .19)  have the same mean ing ,  with the sole d i f fe rence  that  summat ion  of the weights of the 

par t ic les  is carr ied out with respect  to a l l  the  par t ic les  located to the left  of the macroproton with the coord ina te  ~pi 

* Of course,  in ~0,  as previously by nn, we must understand that the vo lume  density of the macropar t i c l e s  is in tend-  
ed.  



Thus, we see tile generality of the right sides of Eqs. (1.18) and (1.19) .  If we also assume that all the particles 
(irrespective of whether they are electrons or protons ) are numbered in order of increase in their coordinates, then it is 
possible to combine Eqs. (1.18) and (1.19) as follows: 

i - -1  

r/+r '2 - -  2b -@ -ff x22 Tt~ for (i= 1, 2 . . . . .  2 /N)  (1.20) 
p+=l 

Here 2l N is the number of all the particles and Yi is the weight of the t-th particle 

qi for an electron particle 

Ti = - -q i  for a proton particle 

1, if ~i is the coordinate of an electron, 

)~ =- - - M / m ,  if gi is the coordinate of a proton. 

The laws of conservation of momentum and energy Eq. (1.6)  have an important role in the solution of the problem 
and for a discrete plasma model take the form: 

2IN 
d ~, d~i I 

21N 21N i - - I  

Equations (1.21) and (1.22) follow immediate ly  from (1.20). The dimensionless electrostatic energy 

(1.22) 

21N ~--1 

8 = ~  T,~+ (T~-I-, 2 2 Tt, ) 
P.=I 

appears in the law of conservation of energy. It is easy to show that ~ from (1.23) is equal to 

(1. ~3) 

-~-130 

e----~ ~ d x ,  

--oo 

(1.24) 

E being given by Eq. (1 .10) .  

2. Formulation of Problem Concerning the Collision of Plasma Clouds and Choice of Method of Calculation.  

The idealized problem of the collision of two plasma clouds can be formulated in relation to the system of equations 
obtained at the end of w 1. Above all,  the idealization consists in the fact that the two clouds are not confined in directions 

perpendicular to the g axis. Further, in the given formulation the role of the magnetic field cannot be taken into ac-  

count. Finally,  the development of oscillations in oblique waves (the vector k does not coincide in direction with the 

velocity v0) is also disregarded. However, none of these l imitations on the physical meaning of the problem is de-  
cisive. 

Let us consider part of the real axis - - L  ~ ~ ~ L and divide it into 2N equal segments. Suppose that at the in -  

stant T = 0 for - - L  ~ ~ ~ 0 (first cloud) there is a single macroelectron and a single macroproton in each of 

these segments. They are moving at an average velocity of - l a n d  have a small  thermal spread described by the above- 

mentioned breakdown of macroparticles into smaller macroparticles. In a segment of length L/N there are l proton 
and l electron macroparticles. Their coordinates and order of arrangement in the segment are random, but they are 

concentrated in 5 - neighborhood of the center of the segment. The second cloud is similarly distributed for 

0 ~ ~ ~ L, the particles being on the average at rest and having the same thermal spread. The particles thus dis- 

posed are numbered in order of increase in coordinates. 

Random distribution of the particles in the segment is achieved by algebraic addition of the coordinate of the center 

of the segment and random numbers normalized so that the new coordinate does not leave the 5-neighborhood of the 

center.  

The process of interpenetration commences at some subsequent instant (z > 0). Interaction with the develop- 

ment of longitudinal electrostatic oscillations begfns with small random disturbances of electr ical  neutrality due to the 

spread of the macroparticles described. In other words, when T ---= 0 , we have 8 --~ 8o @ 0 , where %, in accord- 

ance with physical concepts, must not exceed the ini t ial  thermal energy of the electrons. The origin of the quantity 



~0, generally speaking, is connected with fluctuation processes in the plasma. 

Thus, the important parameter L, the thickness of the plasma cloud, appears in the ini t ial  conditions of thc prob- 

l e m ,  together with the unimportant parameters of the thermal spread of the macroparticles and the initial electrostatic 

energy ~0, provided they are sufficiently smail.  The parameter b ~= k z N/L, which appears in the equation, is expres- 

sed in terms of L. The given number of macroparticles N determines the accuracy of approximation to a continuous 

plasma, and is in fact determined by the computer capacity,  but the parameter k is at our disposal. 

Finally, in order to solve the problem it is necessary to consider a one-parameter family of variants. The dimension- 

less thickness of the plasma cloud L will serve as the characteristic parameter; L varies within such wide limits that 

at minimum L there are almost no interactions even between electron components of the plasma clouds, while at m a x -  

imum L the interaction is considerable even between proton components. In the case of maximum L collision is in-  

etastic. If the thermal spread is small, then its variation is not obligatory. It is given in the following manner in all  the 

variants: a Maxwellian distribution is approximated by four macroparticles at each point, i . e . ,  the number of types 

I = 4 .  

By making the proton and electron temperatures equal, we make the thermal veloci ty spread for the proton macro-  

particles less by a factor of (M/m)  1/2 . The thermal spread of the electrons of both clouds is given in the table [qs and 

/e(0)]. 

cloud 

v$ ~ - - t  
Ve = 0  

8 = t  s ~ 2  --1/s q~ - -  , q~ = ~/a 

- - -0 .8  - - 0 . 9  
- - 0 . 2  - - 0  4 

s ~ 3  ' q a ~  l/s s ~ 4 
q ,  = ~/, 

--t.i I --1.2 
0.1 0 .2  

For the purpose of ensuring the same accuracy of calculat ion a con- 

stant macroparticle density N/L = 1 was assigned in all the variants 

(different values of L) .  A value of k = 2 -I was assumed. Then b is 

constant and equal to 4-1. 

The t ime interval considered in the calculations must exceed the 

effect ive interaction interval of the clouds, which, of course, is determined by the condition of their superposition in 

space: 

r =  2L. 

Thus, r k -> 2L. In order to determine the subsequent development of the oscillations it is desirable to prolong the ca lcu-  

lations somewhat. 

In order to obtain a numerical  solution for Eqs. (1 .20) ,  we can either use the well-known numerical  methods for 

solving ordinary differential equations or make an exact calculat ion,  i . e . ,  one that takes into account each intersec - 

lion of the trajectories of any two neighboring particles. 

The first method is very simple, but in this case it has an important disadvantage: the total energy of the system 

is not conserved. This is because a transition from Eqs. (1.20) to the law of conservation o f  total energy (1 .22)  is pos- 

sible only if the intersections are accurately taken into account.  In general, from (1.20) we get a somewhat different 

expression: 

21N 2IN i - - 1  2IN i ~ l  

[ 5  ( )I e = i = 1  [ x = l  ~ = 1  } = 1  

On the right side of (2.1) there is a sum which obviously is zero if there are no intersections during the given in- 

terval  and nonzero if intersections do occur. 

In the numerical  integration of (1 .20)  by existing difference methods, the difference analog of (2.1) will be valid, 

assuming stability and approximation in the usual sense (see [7] ), for the numerical  solution obtained. 

We shall assume that in the interval &r there are no multiple particle intersections and consider two intersecting 

particles* with coordinates g' and ~" and weights Y' and y ' .  we shall also assume that in the interval &r there are no 

other intersections and that prior to the instant of intersections r 0 

~' < ~", ~' > ~" for "c > *o. 

Then the right side of Eq. ( 2 . 1 ) ,  which is equal to zero f o r t  < r0 , for > r0is approximately:  

2! N i - - 1  

i 1 p . = l  

* The possible simultaneous intersection of a particle with several others may be callcd multiple intersection. In 

this case, the basic argument from (2.2) remains valid, but the proof is more cumbersome. 



}tence it follows that in the difference calculation tile total energy of the system increases as a result of the inter- 
section of unlike charges and decreases upon the intersection of like particles. 

It may be expected that in this problem there will be considerably more intersections of unlike than of like charges. 
In this case there will be an increase in the total energy of the system, as also observed in the calculations (see w ). 
Since the number of intersections increases sharply with t ime,  a serious breakdown of the law of conservation of total 
energy is to be expected in the later stages of the calculations. 

Note that in the law of conservation of total momentum of the system, which also serves as a criterion of the accur- 
acy of the calculations, there is no differentiation of discontinuous quantities. In calculating all the variants this law 
was fulfilled to eight places. 

The exact method also has a serious disadvantage: in the simple realization, i . e . ,  when the t ime step is equal to 
the interval between the two nearest intersections, the calculation interval for a variant increases to such an extent that 
integration of Eqs. (1.20) by this method has no sense. 

With a view to a sensible compromise, the exact method was combined with the difference method for Eq. (1.20).  
For a given A t ,  from known values of (dg/dr)n and gn we found (dg/dr)n +1 and gn +1 by the difference method.  

We then checked for particle intersections in the interval ~N-. If there were intersections, than the values of 
(dg/dr)n + 1 for these particles were recalculated, taking into account the exact t ime of intersection. It was found 

possible to take accurately into account two successive intersections of any particle. However, the idea of taking into 
account three or more intersections of the same particle during the interval Ar had to be abandoned, since the corres- 
ponding logic was extremely complex and the calculating t ime for a single step increases sharply. The time step &r 
was chosen as (1/100)~r in all the variants, and the maximum number of particles possible in the program was 1960. 

3. Discussion of Results 

A series of calculations was made with L = 10, 30, 50, 70, and 100. The resuks were expressed in the form of 
several integral and average quantities as a function of t ime.  As these quantities we selected the momentum and kinetic 
energy of the electrons, respectively: 

�9 1 ' 

t o  = = 

the average ini t ia l  electron velocities of the moving and stationary clouds, Vpl and Vp2, respectively: 

the electrostatic energy s ,  determined from formula (1.23) ,  and, finally, the proton velocities Vpl and v i~ ,  with the 

same significance as the analogous electron velocities. In addition, the total momentum and total energy of the entire 

system were calculated; these must be constant, in accordance with the laws of conservation. The latter served for 
checking the accuracy of the numerical  calculations. Data concerning the local distribution of the quantities were not 
processed in this series of calculations. 

The principal result was a demonstration of the existence of intense collective interaction between the plasma 

clouds from the very beginning of their interpenetration. This agrees with the linear theory, but it should be emphasiz- 

ed that the limits of applicabili ty of the latter to the problem considered are very narrow. 

We shall give a qualitative picture of the process, based on the linear theory [5], and at the same t ime point out 
its l imitations.  In the region of interpenetration of the plasma clouds there develops, above all,  a collective interac- 

tion between the two electron components. The densities of the two clouds are identical ,  and therefore their interaction 
can "randomize" the relative motion of the electrons in a few periods of the plasma oscillations. The electron distribu- 

tion function at the end of this stage of interaction can not be determined on the basis of the linear theory. Further de- 

velopment of the coIlective processes is associated with interaction between the collectivized electron cloud and the two 
proton components, which have almost monochromatic distribution functions. 2'his interaction leads to a transfer of en-  

ergy from the protons to the electrons. The transferred energy is many times greater than the energy of random motion 
of the electrons at the end of the electron-electron interaction stage. This energy transfer process again significantly 

changes the electron distribution function and likewise can not be described within the framework of the linear theory. 

As soon as the electrons have acquired an energy of the order of the energy of oriented motion of the protons, the 

conditions are created for the development of direct interaction between the proton components of the clouds - the 
excitation of low-frequency ionic oscillations. It should be mentioned, however, that at this stage the starting state of 

the proton components is substantially different from their init ial  state, because the energy of oriented motion of the 

protons of the moving cloud has already been to a considerable extent converted into the energy of electron-ion 



oscillations. Consequently, the stage of development of ionic oscillations again cannot be quantitatively described by 
the linear theory. The residue of the energy of oriented morion is converted into ionic oscillations, and this concludes 
the process of plasma cloud interaction of interest to us. The subsequent state of the system may possibly be associated 
with prolonged damping of the excited oscillations, as in [3]. If the dimensions of the clouds L are not sufficiently 
large, then the above process of development of the interactions terminates when the clouds again become separated in 
space. 

We have not raised the problem of a detailed comparison of the numerical  calculations with the results of the linear 
theory, as Dawson, for example,  did in [3] , because, firstly, this is relatively ineffective owing to the narrow range of 
applicabili ty of the linear theory, and, secondly, very t ime-consuming owing to the three-dimensional nature of the 
problem, in contrast to [3]. However, the general features of the interaction process, derived from the linear theory (re( 

example, the different stages of in teract ion)  are useful and are essentially confirmed by the numerical  calculations. 

Let us pass immediate ly  to a discussion of the results obtained. Figure 1 shows curves of t ime ( r  k ~. 80) vs. W e, Ie, 
vel , yea and ~ for the variant L = 30. Figure 1 includes W e curves for slightly different in i t ia l  electrostatic energies 

e 0 and completely different ini t ia l  particle spreads .(see w 2). It should be remarked that in general outline the picture 
of the process is the same. The kinetic energy of the electrons exceeds the in i t ia l  kinetic energy of the oriented and 
thermal motion by a factor of four to five, and the electrostatic energy increases by a factor of 30-40 compared with 
~0 �9 There is an increase in the energy W e + ~ at the expense of a reduction in proton energy. On the average, the 
electron velocities re1 and re2 tend towards a value of --0. 5, which corresponds to electron collectivization.  The 

period of the oscillations is-T ~ 2.3 for r m 80-50 and T ~ 3.1 for r ~ 50-70 (I e curve ). On the other hand, the 

period of the plasma oscillations in an electron plasma of doubled density: 

2~ ~ 2.24 �9 ~* = kf2 o ~ 

while for normal density r* ~ 3.18. According to the linear theory this is precisely the fundamental  period of the e lec-  

tron-ion oscillations [8]. The general orderliness of electron motion, characteristic of the electron-ion interaction stage 

and steadiiy increasing with increase in L, indicates that the osciIlations are quite homogenous throughout the cloud. In 

the ini t ia l  interaction stage, up to r ~ 10-20, on the other hand, the curves are all  very irregular. Here, according to 
the linear theory, there is probably a so-cal led spatial build-up of the oscillations. It should be noted that there is no 

significant polarization of the clouds during the process of oscillation. In fact, if  the characteristic velocity of the e lec-  
trons is ~ 1, then during a half-period ~ 1.5 electrons are displaced relative to the position of the protons by ~ 1.5,  

which is considerably less than the cloud thickness L = 30. 

Finally, the curves have a particularly interesting feature at r ~> 70, i . e . ,  when the plasma clouds have already 

separated in space. There is a well-expressed tendency for W e and e to increase slightly. A similar picture is also ob- 

served in the variant L = 10. Simultaneously with the increase in W e and e there is an intensification of the proton 

velocity oscillations. Obviously, the strong oscillations of the electron component,  associated with cloud interaction,  

condition in each cloud the further dissipation of the energy of  oriented motion of the protons into electron-ion oscil la- 

tions. 

As mentioned above, the law of conservation of energy serves as a check on the accuracy of the numerical  ca lcula-  

tions. It has been assumed that all  the results obtained are meaningful ,  so long as the inequali ty 

We + ~ >~" A W  ( a W  = W (*) - Wo) (s. 1 ) 

is fulfilled. Here AW characterizes the infringement of the law of conservation of energy, and W0 is the ini t ia l  total  

energy of the system. Inequa!ity (8. t ) is a much stronger requirement than the tr ivial  condition 

W ~ AW (3.2) 

became the fraction of electron energy summed with the electrostatic energy is very small  compared with the proton 

energy. For example,  in the variant in question, L = 30, we have W e + a ~ 0.004 W toward the end of the process. 

Given condition ( 3 . 1 ) ,  we can state that the increase in the energy of tee electrons in the e lectron-ion oscillations 

occurs at the expense of the proton energy (we recal l ,  incididental ly ,  that in the calculat ion process &W > 0). Con - 

dition ( 3 . 1 )  was checked in all  the variants calculated.  The condition was violated at r ~. 80 for variants L = 70 and 

L = 100 aiike, when the kinetic energy of the electrons exceeded their in i t ia l  energy by approximately 50 times. In the 
variant L = 100, calculated up to r ~ 180, condition ( 3 . 2 )  was also violated toward the end of the calculations, but the 

electron energy at this t ime was of the order of W 0. However, the last result must evidently be regarded as purely qual- 

i tat ive.  Figure 2 shows W(r) in relative units .  The graph starts at a moment  (r ~ 60) when the energy W already dif- 

fers from W 0 = 739 in the third digit,  The smooth increase in W(r ),  compared with the other variables is worth noting. 

This type of increase may be expected on the basis of the explanation given in w The curves of Vez and Vp2 for the 

variant L = 100 (Fig. 3) are included to give a qualitative illustration of the process of ordered oscillations. Ini t ia l ly ,  
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the Vp2 scale is 10 s times larger than the scale of re2. It can be seen from Fig. 3 that the oscillations of the proton 
velocity are displaced in phase by 7r relative to the oscillations in electron velocity. In addition, the curve Vp2 ex- 
periences low-frequency oscillations with a period of several tens of units. Note that the ionic plasma period for normal 
density is T ~ 130. It is quite possible for the numerical  calculations to detect the development of ionic oscillations, 

especially as the variation of Vpl is correlated with the variation of Vpz. At r ~ 180, the proton velocity Vp2 reaches 
0.4, i . e . ,  the velocity of vibrational motion is comparable with the velocity of oriented motion. 

In order to obtain well-founded quantitative results for the L = 70 and L = 100 variants, it is desirable to make new 

calculations free of the shortcoming mentioned above - violation of the law of conservation of energy. 

In conclusion, we wish to take this opportunity to thank E. Z. Tarumova, B. K. Shembelya and N. N. Yanenko 
for their interest in this project and their useful advice. 
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